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Abstract
We replace time-averaged entanglement by ensemble-averaged entanglement
and derive a simple expression for the latter. We show how to calculate the
ensemble average for a two-spin system and for the Jaynes–Cummings model.
In both cases the time-dependent entanglement is known as well so that one
can verify that the time average coincides with the ensemble average.

PACS numbers: 03.67.Mn, 05.30.−d

1. Introduction

The entanglement of particles is in principle a time-dependent quantity. This time dependence
has been analysed recently in chaotic systems [1], in experimental spectra of triatomic
molecules [2] and in Rydberg atoms [3]. Time-dependent entanglement has been studied
in theoretical models, such as the Dicke model [4], a model of coupled kicked tops [5], the
Harper Hamiltonian [6], a dimer model [7] and Bose–Einstein condensates [8]. In these papers,
the notions of time-averaged entanglement and ensemble-averaged entanglement have been
shown to be useful in monitoring phase transitions, although the generality of this relationship
has been questioned, see e.g. [3].

In addition, time-averaged and ensemble-averaged entanglements are conserved quantities
of quantum microcanonical ensembles [9]. As such they are of interest in the study of closed
systems. This context is suited to discuss the relation between both concepts, and is the starting
point of the present paper.

The entanglement of formation of a pure state is taken here to be defined as the von
Neumann entropy of the reduced density matrix. Often, the von Neumann entropy is replaced
by the linear entropy because the latter can be computed more easily. After this modification,
it still satisfies the criteria [10] that a measure of entanglement should satisfy. A further
justification for using the linear entropy is found in [11].

The definition using linear entropy has been used for a theoretical study of entanglement
in multi-qubit systems [12] and to link entanglement to spatial delocalization [13]. The
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entanglement dynamics of scattering electrons was studied in [14]. In the present paper the
use of the linear entropy is essential to obtain simple results.

For the sake of completeness, and to fix notations, the definitions of entanglement of
pure and of mixed states are reproduced in the following section. Section 3 introduces the
entanglement of microcanonical ensembles of wavefunctions. The main result is announced
in section 4. The proof is found in the appendix. It is followed by a section devoted to the
complications that arise when the state of the system has additional symmetries. In sections 6
and 7 the main result is applied to a system of two interacting spins. Section 8 deals with the
Jaynes–Cummings model. For this model the time-dependent entanglement is known so that
it can be compared with the ensemble average. A short discussion follows in section 9.

2. Definition of entanglement

Consider two independent subsystems, labelled A and B. With each normalized wavefunction
ψ of the combined system corresponds to a reduced density matrix ρA of the subsystem
labelled A. The latter is defined by the relation

TrA ρAX = 〈ψ |X ⊗ I|ψ〉 for all X. (1)

The entanglement of ψ is then equal to the von Neumann entropy of ρA. For technical reasons
we replace this entropy by the linear entropy. The general definition of entanglement is

EA(ψ) = Sf (ρA) ≡ TrA ρAf (ρA), (2)

with f (x) = −ln x in the von Neumann case, and f (x) = 1 − x in the case of the linear
entropy.

If ψ is of the product form ψ = ψA ⊗ ψB , then ρA is a one-dimensional projection
operator. Hence, the entanglement vanishes. A similar definition holds for ρB and for EB . The
entanglements EA(ψ) and EB(ψ) are equal [15]. To see this, select a basis um in subsystem A
and a basis vp in subsystem B, so that

ψ =
∑

n

√
pnun ⊗ vn. (3)

This is possible by means of the Schmidt construction. Then ρA and ρB are diagonal, with
eigenvalues pn and with entropy equal to

∑
n pnf (pn).

Often, the state of the system is not described by a wavefunction ψ but by a density matrix
ρ. Such a density matrix can be written into the form

ρ =
∑

n

pn|ψn〉〈ψn|, (4)

with pn � 0,
∑

n pn = 1 and with ψn normalized wavefunctions. Then the entanglement of
ρ has been defined [16] as the minimum of the average entanglement

E(ρ) = min
∑

n

pnEA(ψn), (5)

where the minimum is taken over all possible ways to write (4).

3. Definition of mean entanglement of a microcanonical ensemble

The mean entanglement, which is studied in the present paper, is not the average (5), but rather
the average over a microcanonical ensemble, as introduced in [9].
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Let be given a density matrix ρ, which is diagonal in the orthonormal basis of
wavefunctions ψn, with eigenvalues pn : ρψn = pnψn. Associated with this diagonal
density matrix is an ensemble of wavefunctions of the form

ψ =
∑

n

√
pn eiχnψn, (6)

where χn are arbitrary phase factors. The ensemble average of the entanglement is then
denoted E and is given by

E =
〈
EA

(∑
n

√
pn eiχnψn

)〉
χ

, (7)

where the average over χ is obtained by integrating over all phase factors χn from 0 to 2π ,
normalized by dividing by a factor 2π . Note that the ensemble average (7) does not depend
on the chosen subsystem because EA(ψ) = EB(ψ) for all ψ .

The ensemble (6) can be obtained by starting from a single wavefunction ψ , in combination
with the quantum mechanical time evolution. The Hamiltonian H is the generator of the unitary
time evolution

ψt = U(t)ψ with U(t) = e−ih̄−1tH . (8)

The time average of the entanglement EA(ψ) is then defined by

〈EA(ψt)〉t = lim
T →∞

1

T

∫ T

0
dt EA(ψt). (9)

Assume now that the Hamiltonian is diagonal in the basis of wavefunctions ψn, with
eigenvalues εn. Then one has

ψt =
∑

n

λn e−ih̄−1εntψn (10)

and hence

〈EA(ψt)〉t = lim
T →∞

1

T

∫ T

0
dt EA

(∑
n

λn e−ih̄−1εntψn

)
. (11)

The wavefunctions ψt belong to the ensemble (6) with pn = |λn|2. If the conditions of the
classical ergodic theorem hold then the time average (11) coincides with the ensemble average
(7)—see [9]. But even when the classical ergodic theorem does not hold, one can continue
to use the ensemble average instead of the time average because experimentally the slightest
perturbation may restore ergodicity.

4. Main result

Let be given an ensemble of wavefunctions of the form (6). With each of the basis vectors ψn

is associated a couple of reduced density matrices ρA and ρB . For convenience, these will be
denoted by σn and τn. Introduce the density matrices σ and τ , defined by

σ =
∑

n

pnσn and τ =
∑

n

pnτn. (12)

In some sense, σ is the ensemble average of ρA, τ is the ensemble average of ρB .
Our main result is now that the mean entanglement, defined by (7), using the linear entropy

S1, can be written as

E = S1(σ ) + S1(τ ) − 	, (13)
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where 	 is a contribution common to both S1(σ ) and S1(τ ). It is given by

	 = 1 −
∑
m

p2
m TrA σ 2

m = 1 −
∑
m

p2
m TrB τ 2

m. (14)

The proof of this relation is given in the appendix.
The applications of (13) are explored in later sections.

5. Degeneracies

The ensemble (6) is uniquely defined by the density operator ρ in the case that the eigenvalues
pn of ρ are two-by-two distinct. Then the eigenfunctions ψn are unique up to a phase factor.
However, if some of the eigenvalues pn coincide then the orthonormal basis is non-unique.
In particular, if a non-zero eigenvalue pn is degenerate then different choices of orthonormal
wavefunctions may influence the value of E . This shows that E is the average entanglement
of the ensemble and is not suitable as a definition of the entanglement of ρ.

A similar question is whether the entanglement of the ensemble can be used as the
definition of the mean entanglement of the wavefunction ψ . Consider the situation that some
of the eigenvalues εn of the Hamiltonian H are degenerate. Then the basis of wavefunctions
ψn, which diagonalizes H, is not uniquely defined (up to phase factors). In that case the
wavefunction ψ should not be decomposed into an arbitrary diagonalizing orthonormal basis.
Rather, it should be projected onto the invariant subspaces of H. This determines in a unique
way an orthonormal basis which then can be used to form the ensemble associated with ψ .
An example of the degenerate case is given below.

6. Two-spin example

The simplest example is that of two quantum spins, each described by Pauli spin matrices and
a Hamiltonian H which is diagonal in the basis of wavefunctions:

ψ1 = 1√
2
(|↑↑〉 + |↓↓〉)

ψ2 = 1√
2
(|↑↑〉 − |↓↓〉)

ψ3 = 1√
2
(|↑↓〉 + |↓↑〉)

ψ4 = 1√
2
(|↑↓〉 − |↓↑〉).

(15)

We assume that the energy levels are non-degenerate. Their actual value is not needed.
The reduced density matrices σm and τm, corresponding with ψm, are all equal to 1

2 I.
Hence, also the averages σ and τ are equal to 1

2 I. As a consequence, the linear entropies
S1(σ ) and S1(τ ) both equal 1/2. However, the common part 	 depends on the choice of the
wavefunction ψ . One finds

	 = 1 −
∑
m

p2
m TrA σ 2

m = 1 − 1

2

∑
m

p2
m. (16)

The final result for the mean entanglement of ψ is therefore

E = 1

2
+

1

2
−

(
1 − 1

2

∑
m

p2
m

)
= 1

2

∑
m

p2
m. (17)

Note that this result lies between 1/4 and 1/2.
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It is possible but tedious to verify by explicit calculation that the mean entanglement (17)
coincides with the time average of EA(ψt), as it should be.

7. Degenerate two-spin example

Consider a two-spin system with energy −ε for anti-parallel spins and +ε for parallel spins.
This is a degenerate limit of the previous example. The ensemble, generated by an arbitrary
ψ , now contains two free phase factors instead of four. It consists of all wavefunctions of the
form

eiχ1λ1ψ1 + eiχ2λ2ψ2, (18)

with χ1 and χ2 arbitrary, and with λ1ψ1, λ2ψ2 given by

λ1ψ1 = |↑↓〉〈↑↓|ψ〉 + |↓↑〉〈↓↑|ψ〉
λ2ψ2 = |↑↑〉〈↑↑|ψ〉 + |↓↓〉〈↓↓|ψ〉.

(19)

The coefficients λ1 and λ2 are chosen in such a way that ψ1 and ψ2 are normalized. The
reduced density matrices are found to be

p1σ1 =
(

p+− 0
0 p−+

)

p2σ2 =
(

p++ 0
0 p−−

)
,

(20)

with p+− = |〈↑↓|ψ〉|2 and similar definitions for p−+, p++ and p−−. Similar expressions hold
for τ1 and τ2:

p1τ1 =
(

p−+ 0
0 p+−

)

p2τ2 =
(

p++ 0
0 p−−

)
.

(21)

The mean entanglement can now be calculated using (13). The result is

E = 2p++p−− + 2p+−p−+. (22)

In the notation of the previous section this becomes

E = 1
2 (p1 − p2)

2 + 1
2 (p3 − p4)

2, (23)

which is less than (17) by the term −p1p2 − p3p4.

8. The Jaynes–Cummings model

The Jaynes–Cummings model [17, 18] describes a two-level system interacting with a
harmonic oscillator. The latter represents a single mode of the electromagnetic field in a
cavity. The model has been studied extensively.

The Hamiltonian of the model reads

H = h̄ωa†a + 1
2h̄ω0σz + h̄κ(a†σ− + aσ+), (24)

with a† and a creation and annihilation operators of the harmonic oscillator, and with the Pauli
matrices σz and σ± describing the two-level system.
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Let |g〉 and |e〉 denote the ground state, respectively the excited state of the two-level
system. Let |n〉, n = 0, 1, . . . denote the eigenstates of the harmonic oscillator. The eigenstates
of the Jaynes–Cummings Hamiltonian are explicitly known, see e.g. [19]. An orthonormal
basis of eigenfunctions is given by

ψ0 = |g〉 ⊗ |0〉
ψ1,n = cos(θn)|g〉 ⊗ |n + 1〉 + sin(θn)|e〉 ⊗ |n〉
ψ2,n = −sin(θn)|g〉 ⊗ |n + 1〉 + cos(θn)|e〉 ⊗ |n〉.

(25)

The angles θn, n = 0, 1, 2, . . . follow from the relation

tan θn = κ

√
n + 1

1
2 (ω − ω0) + λn

, (26)

with

λn =
√

1
4 (ω − ω0)2 + κ2(n + 1). (27)

The time dependence of the reduced density matrix can be calculated explicitly if the
initial state is a product state with the two-level system in the excited state and the harmonic
oscillator is in the nth eigenstate, see e.g. [19]. The result for the reduced state of the two-level
system is

ρA(t) = Wn(t)|g〉〈g| + (1 − Wn(t))|e〉〈e|, (28)

with

Wn(t) = 2γn sin2(tκ
√

n + 1), (29)

and with

γn = 1
2 sin2(2θn). (30)

The linear entanglement is therefore

EA(ψt) = 1 − W 2
n (t) − (1 − Wn(t))

2. (31)

The time average equals

〈EA(ψt)〉t = 2γn − 3γ 2
n . (32)

It is straightforward to calculate the reduced density matrices for the eigenfunctions of
the model. The result is

σ0 = |0〉〈0|, (33)

σ1,n = cos2 θn|n + 1〉〈n + 1| + sin2 θn|n〉〈n|, (34)

σ2,n = sin2 θn|n + 1〉〈n + 1| + cos2 θn|n〉〈n|, (35)

τ0 = |g〉〈g|, (36)

τ1,n = cos2 θn|g〉〈g| + sin2 θn|e〉〈e|, (37)

τ2,n = sin2 θn|g〉〈g| + cos2 θn|e〉〈e|. (38)

Hence, it is straightforward to evaluate the mean entanglement E for an arbitrary wavefunction
ψ . However, we did not succeed to rewrite the resulting expression in a simple and transparent
way.
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In the case that ψ is of the product form

ψ = |e〉 ⊗ |n〉 = sin(θn)ψ1,n + cos(θn)ψ2,n, (39)

one obtains

σ = sin2(θn)σ1,n + cos2(θn)σ2,n

= γn|n + 1〉〈n + 1| + (1 − γn)|n〉〈n|
τ = sin2(θn)τ1,n + cos2(θn)τ2,n

= γn|g〉〈g| + (1 − γn)|e〉〈e|
	 = 1 − sin4(θn) TrB τ 2

1,n − cos4(θn) TrB τ 2
2,n

= 1 − (1 − γn)
2. (40)

This leads to the result

E = 2γn − 3γ 2
n , (41)

which is identical with the time-averaged result (32).

9. Discussion

The calculation of the time dependence of the entanglement of a quantum system is a hard
problem. The average over time is more accessible because it can be replaced by an ensemble
average. This is in particular so when the entanglement is defined using the linear entropy
instead of the von Neumann entropy of the reduced density matrix, because in that case there
exists a simple expression for the mean entanglement—see (13). We have used this expression
in a two-spin system and in the Jaynes–Cummings model. For these systems it is feasible to
calculate both the averages over time and over the ensemble of wavefunctions. The results of
the two calculations coincide, as it should be.

We have pointed out that a systematic degeneracy of the energy levels of the Hamiltonian
due to the presence of a symmetry influences the choice of the ensemble of wavefunctions,
used in the calculation of the average entanglement. In the example of the two-spin system
the additional symmetry leads to a reduction of the entanglement.

Finally, let us note that the use of the linear entropy is rather essential in our paper. It is of
course possible as well to define the ensemble average of the entanglement, based on the von
Neumann entropy. It is however unlikely that a simple formula like (13) exists in that case.

Appendix

Here, the proof of (13) is given. From definition (7) follows, assuming a linear entropy,

E = 1 − 〈
TrA ρ2

A(χ)
〉
χ

, (A.1)

with ρA(χ) defined by

TrA ρA(χ)X =
〈∑

m

√
pm eiχmψm

∣∣∣∣∣X ⊗ I

∣∣∣∣∣
∑

n

√
pn eiχnψn

〉

=
∑
mn

√
pmpn e−i(χm−χn) TrA σmnX, (A.2)
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with σmn defined by

TrA σmnX = 〈ψm|X ⊗ I|ψn〉. (A.3)

Hence, one obtains

E = 1 −
〈

TrA

(∑
mn

√
pmpn e−i(χm−χn)σmn

)2〉
χ

= 1 −
∑
mn

∑
rs

√
pmpnprps〈e−i(χm−χn) e−i(χr−χs)〉χ TrA σmnσrs

= 1 −
∑
mn

pmpn TrA σmmσnn −
∑
mn

pmpn TrA σmnσnm

+
∑
m

p2
m TrA σ 2

mm. (A.4)

Now use that σmm ≡ σm to see that the first two terms yield the contribution S1(σ ). The last
term is 1 − 	. Hence, it remains to be shown that

S1(τ ) = 1 −
∑
mn

pmpn TrA σmnσnm. (A.5)

Choose an orthonormal basis ur for the subsystem A and an orthonormal basis vp for the
subsystem B. Then one has

σmn =
∑
rsp

[〈ψm|us ⊗ vp〉〈ur ⊗ vp|ψn〉]|r〉〈s|, (A.6)

so that

TrA σmnσnm =
∑
rspq

〈ψm|us ⊗ vp〉〈ur ⊗ vp|ψn〉〈ψn|ur ⊗ vq〉〈us ⊗ vq |ψm〉

=
∑
pq

〈ψm|(I ⊗ |vp〉〈vq |)|ψm〉〈ψn|(I ⊗ |vq〉〈vp|)|ψn〉

=
∑
pq

〈vq |τm|vp〉〈vp|τn|vq〉

= TrB τmτn. (A.7)

Relation (A.5) now follows readily.
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